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Abstract

We address the question of whether integrable models allow for PT -symmetric
deformations which preserve their integrability. For this purpose we carry out
the Painlevé test forPT -symmetric deformations of Burgers and the Korteweg–
De Vries equations. We find that the former equation allows for infinitely
many deformations which pass the Painlevé test. For a specific deformation
we prove the convergence of the Painlevé expansion and thus establish the
Painlevé property for these models, which are therefore thought to be integrable.
The Korteweg–De Vries equation does not allow for deformations which pass
the Painlevé test in complete generality, but we are able to construct a defective
Painlevé expansion.

PACS numbers: 02.60.Lj, 02.30.Ik, 03.65.Ge, 03.50.−z, 11.30.Er

1. Introduction

Classical as well as quantum-mechanical models, which are invariant under a simultaneous
parity transformation P : x → −x and time reversal T : t → −t , can be deformed in a
controlled manner to produce new PT -symmetric theories [1–8]. The crucial feature of these
models is that the PT -symmetry can be utilized to guarantee the reality of the energy spectra,
which is due to the fact that its operator realization is a specific example of an anti-linear
operator [9]. In contrast to standard textbook wisdom, this means when the systems are
Hamiltonian, they are non-dissipative despite being non-Hermitian. An important question to
answer in this context is whether it is possible to deform models in a symmetry preserving
manner. Regarding supersymmetry, it was recently shown [10] that this is indeed possible.
Here we will focus on the question whether this is also accomplishable with regard to the
symmetry underlying integrability. In other words, do integrable PT -symmetric models
allow for deformations which do not destroy the integrability? A positive answer to this
question will naturally lead to new integrable models. For some cases partial results already
exist [7, 8, 10–16]. Here we will focus on two prototype models of integrable systems, the
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Burgers and the Korteweg–de Vries (KdV) equations. We will carry out the Painlevé test for
PT -symmetric deformations of these models, establish thereafter in some cases the Painlevé
property and draw conclusions about their integrability.

As there exist various notions and definitions about integrability, the Painlevé test, the
Painlevé property, etc, let us briefly indicate which ones we are going to adopt in this paper. To
start with, there is clearly no doubt that integrability is an extremely desirable property to have
in a physical system, as it usually leads to exact solvability rather than to mere perturbative
results. In the context of (1+1)-dimensional quantum field theories the notion of integrability
is usually used synonymously to the factorization of the scattering matrix, where the latter can
be achieved simply by making use of one non-trivial charge [17]. Unlike as in most scenarios
when one compares quantum and classical theories, the latter appear to be more complicated in
this particular regard. In classical systems the definitions of integrability are much more varied
and non-uniform. A common notion is the so-called Liouville integrability, which assumes for
a system with N degrees of freedom the existence of N analytic single-valued global integrals
of motion in involution. The equations of motion are then separable and exact solutions can be
obtained, at least in principle. Focusing on differential equations, as we do in this paper, one
calls them integrable when, given a sufficient amount of initial data, they are solvable via an
associated linear problem. The problem with all these definitions is that one does not know a
priori whether a system is integrable or not without having computed all integrals of motion,
mapped the problem to a linear one or actually solved the equations of motion. A general
method to identify integrable models before this, often very difficult, task is completed does
not exist. The closest one may get to such a method is to check whether the system possesses
the Painlevé property. One can then assume that the Painlevé property implies integrability
in the above specified sense, albeit this connection is not rigorously proven. To make matters
worse, there exist even definitions which include the notion of integrability into the definition
of the Painlevé property [18].

The concept of the Painlevé property can be traced back more than a century to the original
investigations of Painlevé et al. [19], who set out to construct new functions from the solutions
of ordinary differential equations (ODE). The notion of a function implies immediately that
the solutions one is seeking ought to be single valued, which leads to a natural definition: an
ODE whose (general) solutions have no movable1 critical2 singularities is said to possess the
(generalized) Painlevé property [18, 20, 21]. The classification of possible solutions to this
problem can be organized into equivalence classes obtained from linear fractional (Möbius)
transformations and has been completed only to some degree. It is proven that all linear ODE
possess the Painlevé property, first-order algebraic nonlinear equations lead to Weierstrass
functions and second-order algebraic nonlinear equations lead to the famous six Painlevé
transcendental functions. The classification of algebraic ODEs with Painlevé property of
order greater than two is still an open problem, albeit some partial results exist [22–24].

The situation is somewhat less structured for partial differential equations (PDE).
Extrapolating the previous notions one defines: a PDE whose solutions have no movable
critical singularities near any noncharacteristic3 manifold is said to possess the Painlevé
property. In general this is difficult to establish, however, there exists a more applicable
necessary, albeit not sufficient, condition for a PDE to possess the Painlevé property, which
was developed by Weiss et al [25] and is usually referred to as the Painlevé test. This method
is extremely practical and can be carried out in a very systematic fashion. Roughly speaking

1 Movable means that the solution depends on the initial values.
2 A critical singularity is multivalued in its neighborhood.
3 On a characteristic manifold we cannot apply Cauchy’s existence theorem and therefore we do not have a unique
solution for a given initial condition.
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the main idea is that one expands the solution for a PDE (or ODE) in a power series starting
with some single-valued leading order terms. In case the series can be computed and involves
as many free parameters as the order of the PDE then it is said that the PDE passes the Painlevé
test. In order to extrapolate from the Painlevé test to the Painlevé property one should also
establish the convergence of the series, which, however, has been carried out only in very rare
cases.

For our purposes the relation between the Painlevé property (test) and integrability is
the most interesting. Ablowitz et al [26] conjectured almost 30 years ago: any ODE which
arises as a reduction of an integrable PDE, possibly accompanied by a variable transformation,
possesses the Painlevé property. To this day this conjecture has not been proven rigorously,
but is supported by a huge amount of evidence. On one hand one has verified this property
for almost all known integrable PDEs [6, 25, 27–29] and in turn, which is more impressive,
one has also used it to identify new integrable ODEs [30, 31]. The latter is what we hope to
achieve in this paper.

In summary, we will adopt here the logic that a PDE which passes the Painlevé test and
whose Painlevé expansion converges also possess the Painlevé property. We take this as a
very good indication that the system is integrable.

We briefly explain the deformation procedure in section 2 and carry out the analysis for
Burgers and the KdV equations in sections 2.1 and 2.2, respectively. We state our conclusions
in section 3.

2. PT -symmetrically deformed integrable models

Given a PT -symmetric PDE as a starting point, we adopt the deformation principle of
[7, 8, 10] to define new PT -symmetric extensions of this model by replacing ordinary
derivatives by their deformed counterparts

∂xf (x) → −i(ifx)
ε =: fx;ε with ε ∈ R. (2.1)

Clearly the original PT -symmetry is preserved. In general the deformations will continue real
derivatives into the complex plane, unless ε = 2n − 1 with n ∈ Z. We do not make use here
of the possibility to deform also the higher derivatives via deformation (2.1), i.e. replacing
for instance ∂2

xf (x) by fx;ε ◦ fx;ε, but simply define them as a successive action of ordinary
derivatives on one deformation only

∂n
x f (x) → iε−1∂n−1

x (fx)
ε = ∂n−1

x fx;ε =: fnx;ε. (2.2)

This deformation preserves the order of the PDE. We can now employ this prescription to
introduce new PT -symmetric models.

2.1. Painlevé test for the PT -symmetrically deformed Burgers’ equation

Burgers’ equation is extensively studied in fluid dynamics and integrable systems, as it
constitutes the simplest PDE involving a nonlinear as well as a dispersion term

ut + uux = σuxx. (2.3)

Obviously equation (2.3) remains invariant under the transformation t → −t, x → −x, u →
u and σ → −σ . Taking the constant σ to be purely imaginary, i.e. σ ∈ iR, this invariance
can be interpreted as a PT -symmetry, which was also noted recently by Yan [32]. A similar
complex, albeit not PT -symmetric, version of Burgers’ equations plays an important role in
the study of two-dimensional Yang–Mills theory with an SU(N) gauge group [33, 34]. The
models considered in [33, 34] become PT -symmetric after a Wick rotation, i.e t → it .
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Let us now consider the PT -symmetrically deformed Burgers’ equation

ut + uux;ε = iκuxx;μ with κ, ε, μ ∈ R, (2.4)

where for the time being we allow two different deformation parameters ε and μ.
Our first objective is to test whether this set of equations passes the Painlevé test. Following

the method proposed in [25], we therefore assume that the solution of (2.4) acquires the general
form of the Painlevé expansion

u(x, t) =
∞∑

k=0

λk(x, t)φ(x, t)k+α. (2.5)

Here α ∈ Z− is the leading order singularity in the limit φ(x, t) = (ϕ(x, t) − ϕ0) → 0, with
ϕ(x, t) being an arbitrary analytic function characterizing the singular manifold, ϕ0 being an
arbitrary complex constant which can be utilized to move the singularity mimicking the initial
condition and the λk(x, t) are analytic functions, which have to be computed recursively.

2.1.1. Leading order terms. As a starting point we need to determine all possible values
for α by substituting the first term of expansion (2.5), that is u(x, t) → λ0(x, t)φ(x, t)α ,
into (2.4) and reading off the leading orders. For the three terms in (2.4) they are ut ∼
φα−1, uux;ε ∼ φα+αε−ε and uxx;μ ∼ φαμ−μ−1. In order for a non-trivial solution to exist
the last two terms have to match each other in powers of φ, which immediately yields
α = (ε − μ − 1)/(ε − μ + 1) ∈ Z−. Thus α = −1 and ε = μ are the only possible solutions
provided ε and μ are integers. Based on the leading order analysis the possibility of rational
values for ε and μ cannot be excluded as they might also produce negative integer values for
α, e.g. ε = 1/3 and μ = 2/3 will produce α = −2. However, the deformation principle (2.1)
for the function u in the form (2.5) or its derivatives will always lead to expressions which
involve taking the root of an infinite sum. Consequently the Painlevé test in the spirit of [25]
cannot be performed. For integer values of ε and μ, this means we observe from the very
onset of the procedure that only the models in which all x-derivatives are deformed with the
same deformation parameter have a chance to pass the Painlevé test. For that assumption we
can therefore conclude already at this stage that one of the deformations of (2.3) studied in
[32], i.e. ε = 1 and μ generic, cannot pass the Painlevé test in the usual sense. Hence they
do not possess the Painlevé property and are therefore not integrable for μ being integer. The
case of non-integer values of μ remains inconclusive.

2.1.2. Recurrence relations. Substituting next the Painlevé expansion (2.5) for u(x, t) with
α = −1 into (2.4) with ε = μ gives rise to the recursion relations for the λk by identifying
powers in φ(x, t). We find

at order − (2ε + 1): λ0 + i2εκφx = 0,

at order − 2ε: φtδε,1 + λ1φx − iκεφxx = 0,

at order − (2ε − 1): ∂x(φtδε,1 + λ1φx − iκεφxx) = 0,

(2.6)

such that

λ0 = −i2εκφx, λ1 = (iεκφxx − φtδε,1)/φx and λ2 is arbitrary. (2.7)

This means that the number of free parameters, i.e. ϕ0 and λ2, at our disposal equals the order
of the PDE, such that (2.4) passes the Painlevé test provided the series (2.5) makes sense and
we can determine all λj with j > 2. To compute the remaining λj we need to isolate them on
one side of the equation and those involving λk with k < j on the other side. We expect to
find some recursion relations of the form

g(j, φt , φx, φxx, . . .)λj = f (λj−1, λj−2, . . . , λ1, λ0, φt , φx, φxx, . . .), (2.8)
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with g and f being some functions characteristic for the system under consideration. We will
not present here these recursion relations for generic values of ε as they are rather cumbersome
and we shall only present the first non-trivial deformation, that is the case ε = 2.

2.1.3. Resonances. For some particular values of j , say j = r1, . . . , r�, we might encounter
that the function g in (2.8) vanishes. Clearly this leads to an inconsistency and a failure of the
Painlevé test unless f also vanishes. In case this scenario occurs, it implies that the recursion
relation (2.8) does not fix λj and the compatibility conditions g = f = 0 lead to � so-called
resonances λri

for i = 1, . . . �. When � + 1 is equal to the order of the differential equation
we can in principle produce a general solution which allows for all possible initial values. It
might turn out that some missing free parameters are located before the start of expansion
(2.5), i.e. at j < 0, the so-called negative resonances which can be treated following arguments
developed in [35]. When not enough additional free parameters exist to match the order of the
differential equation, the series is still of Painlevé type and is called defective.

It is straightforward to determine all possible resonances by following a standard argument.
The first term in expansion (2.5) gives rise to the leading order singularity which needs to be
cancelled by some yet unknown term in the expansion. Let us carry out the calculation for
Burgers equation. Using the expression for λ0 from (2.7) and making the ansatz

ũ(x, t) = −2iεκ
φx

φ
+ ϑφr−1, (2.9)

we can compute all possible values of r for which ϑ becomes a free parameter. Substituting
ũ(x, t) into (2.4) and reading off the terms of the highest order, i.e. φ−2ε−1+r , we find the
necessary condition

i2ε−1εεϑ(r + 1)(r − 2)κεφ2ε
x = 0, (2.10)

for a resonance to exist. This yields precisely to two resonances, one at r = 2, corresponding
to the third equation in (2.6), and the so-called universal resonance at r = −1. This means
also at higher order we cannot encounter any inconsistencies or possible breakdowns of the
Painlevé test for any value of the deformation parameter ε.

2.1.4. From the Painlevé test via Painlevé property to integrability. Once it is established
that a PDE passes the Painlevé test one needs to be cautious about the conclusions one can
draw as it is only a necessary but not sufficient condition for the Painlevé property. In case one
can also guarantee the convergence of the series the PDE possess the Painlevé property, which
is taken as very strong evidence for the equation to be integrable. This step has only been
carried out rigorously in very rare cases, e.g. in [36, 37]. Here we establish the convergence
for one particular deformation.

2.1.5. The ε = 2 deformation. As already mentioned, the details of the recursion relation
for generic values of ε are rather lengthy and we shall therefore only present the case ε = 2
explicitly. In that case the deformed Burgers’ equation (2.4) becomes

ut + iuu2
x + 2κuxuxx = 0. (2.11)

The substitution of the Painlevé expansion (2.5) into (2.11) and the subsequent matching of
equal powers in φ then yields the recursion relation

iλ0φ
2
x{λj [(2j − 3)λ0 − 2i((j − 5)j + 4)κφx] + 2λ0 (λ0 + 2iκφx) δ0,j }

=
j∑

n,m=1

{λj−m−n−2λm,xλn;x + (m − 1)λmφx

5
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× [(n − 1)λj−m−nλnφx + 2λj−m−n−1λn;x]}

+
j−1∑
n=1

{
2λ0,x[(n − 1)λj−n−1λnφx + λj−n−2λn;x]

− 2λ0φx[(n − 1)λj−nλnφx + λj−n−1λn;x]

− 2iκ
{
λj−n,x

[
λn−3;xx + (n − 3)

(
(n − 2)λn−1φ

2
x + 2λn−2,xφx + λn−2φxx

)]
+ (j − n − 1)λj−nφx

[
λn−2;xx

+ (n − 2)
(
(n − 1)λnφ

2
x + 2λn−1,xφx + λn−1φxx

)]}}
+ 2λ0,x[(j − 5)j + 6]κλj−1φ

2
x + λj−2[2(j − 3)κφxx + iλ0,x]

− 2λ0φx{λj−1[(j − 2)κφxx + iλ0;x] + κ[λj−2;xx + 2(j − 2)φxλj−1;x]}
+ (j − 4)λj−3φt + λj−4;t + 2κλ0,x[λj−3;xx + 2(j − 3)φxλj−2;x], (2.12)

which is indeed of the general form (2.8). Having brought all λj with j > k to the left-hand
side of (2.12), we may now successively determine the λj to any desired order. Starting with
the lowest value j = 0 equation (2.12) reduces to

λ2
0φ

2
x(λ0 + i4κφx) = 0, (2.13)

which leads to λ0 = −i4κφx and thus simply reproduces the expression in (2.7) for ε = 2.
For j = 1 the equation (2.12) simplifies to

−λ2
0λ1φ

2
x = 2λ0φx[iκλ0φxx + (λ0 + i4κφx)λ0;x], (2.14)

such that λ1 = i2κφxx/φx , which coincides with (2.7) for ε = 2. When j = 2 the equation
acquires the form

λ0λ2φ
2
x(λ0 + 4σφx) = 2φxλ1;xλ2

0 − λ2
0;xλ0 + 2λ1φxλ0;x − 2 iκφxxλ0;x

− 4 iκφxλ
2
0;x − 2iκφx(λ0,xx − 2φxλ1;x)λ0. (2.15)

It is evident that the left-hand side vanishes identically and upon substitution of the values for
λ0 and λ1. We can verify that this also holds for the right-hand side of (2.15), thus leading to
the first resonance at level 2 and therefore to an arbitrary parameter λ2. One may now continue
in this fashion to compute the expansion to any finite order, but before we embark on this task
we make a few further simplification.

As the singularity has to be a noncharacteristic analytic movable singularity manifold,
we employ the implicit function theorem and make a further assumption about the specific
form of λk(x, t) = λk(t) and φ(x, t) = x − ξ(t), with ξ(t) being an arbitrary function. Then
equation (2.12) simplifies to a much more transparent form

8κ2(8κδ0,j + i(j − 2)(j + 1)λj (t)) =
j∑

n,m=1

i(1 − m)(n − 1)λm(t)λj−m−n(t)λn(t)

+
j−1∑
n=1

[2κ(n − 1)(n2 − n − j (n − 2) + 2)λj−n(t)λn(t)]

+ (j − 4)λj−3(t)ξ
′(t) − λ′

j−4(t). (2.16)

Solving this equation recursively leads to the Painlevé expansion

u(x, t) = −4iκ

φ
+ λ2φ +

ξ ′

8κ
φ2 − iλ2

2

20κ
φ3 − iλ2ξ

′

96κ2
φ4 + O(φ5). (2.17)

Clearly we can use (2.16) to extend this expansion to any desired order. For the ordinary
Burgers equations, i.e. ε = 1, there exists a simple choice for the free parameters,
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which terminates the expansion, such that one may generate Bäcklund and Cole–Hopf
transformations in a very natural way. Unfortunately (2.17) does not allow an obvious choice
of this form. Taking for instance λ2 = 0 yields the expansion

u(x, t) = −4iκ

φ
+

ξ ′φ2

23κ
− iξ ′2φ5

7 × 28κ3
+

iξ ′′φ6

5 × 29κ3
− ξ ′3φ8

35 × 213κ5
− 23ξ ′ξ ′′φ9

385 × 213κ5

− ξ (3)φ10

135 × 214κ5
+

19iξ ′4φ11

3185 × 218κ7
− 51 iξ ′2ξ ′′φ12

385 × 219κ7

− i(43 641ξ ′′2 + 16 460ξ ′ξ (3))φ13

779 625 × 220κ7
+ O(φ14). (2.18)

Being even more specific and assuming a solitary wave solution, the general form of the
movable singularity is ξ(t) = ωt , which gives

u(x, t) = −4iκ

φ
+

ωφ2

23κ
− iω2φ5

7 × 28κ3
− ω3φ8

35 × 213κ5
+

19iω4φ11

3185 × 218κ7
+

ω5φ14

3185 × 221κ9

− 561 iω6φ17

2118 025 × 228κ11
− 93ω7φ20

3328 325 × 232κ13
+

6 25 011iω8φ23

53 003 575 625 × 238κ15

+
32 971ω9φ26

53 003 575 625 × 241κ17
− 1509 727iω10φ29

11 501 775 910 625 × 246κ19
+ O(φ30). (2.19)

Clearly we can carry on with this procedure to any desired order.

Convergence of the Painlevé expansion. Having established that the deformed Burgers
equations pass the Painlevé test for any value of the deformation parameter ε, let us now
see whether the obtained series converges such we may conclude that these equations also
possess the Painlevé property. It suffices to demonstrate this for some specific cases. Taking
for this purpose λ2 = 0, we can express expansion (2.18) in the general form

u(x, t) = −4iκ

φ
+ φ

∞∑
n=1

αnφ
n (2.20)

and employ Cauchy’s root test, i.e.
∑∞

n=1 γn converges if and only if limn→∞ |γn|1/n � 1, to
establish the convergence of the series. We can easily find an upper bound for the real and
imaginary parts of αn

|Re α3n−ν | � |Re p3n−ν(ξ
′, ξ ′′, ξ ′′′, . . .)|

23n+4−ν�
(

3n−ν
2

)|κ|2n−1
for ν = 0, 1, 2, (2.21)

where the pn(ξ
′, ξ ′′, ξ ′′′, . . .) are polynomials of finite order in t, that is

∑�
n=0 ωntn with � < ∞

and ω ∈ C. The same expression holds when we replace the real part by the imaginary part on
both sides of the inequality. We should also comment that this point of the proof is not entirely
rigorous in the strict mathematical sense as we have only verified estimate (2.21) up to order
30. Approximating now the gamma function in (2.21) by Stirling’s formula as n → ∞

�

(
n

2

)
∼

√
2π e−n/2

(
n

2

) n−1
2

(2.22)

we obtain

lim
n→∞ |Re α3n−ν | 1

2 ∼ |Re p3n−ν |1/n

23+ 4−ν
n (2π)

1
2n e− 1

2
(

3n−ν
2

) 1
2 − 1

2n |κ|2− 1
n

= 0. (2.23)

The same argument holds for the imaginary part, such that the series (2.20) converges for
any value of κ and choices for ξ(t) leading to finite polynomials pn(ξ

′, ξ ′′, ξ ′′′, . . .). It is
straightforward to repeat the same argument for λ2 	= 0.

7
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Alternatively we can identify the leading order term in (2.11) and integrate the deformed
Burgers equation twice. In this way we change the ODE into an integral equation

u(x, t) = 2κ

{
g(t) +

∫ x

x1

dx̂

[
i

2
+

1

u2(x̂, t)

(
f (t) +

∫ x̂

x0

dx̃
ut (x̃, t)

ux̃(x̃, t)

)]}−1

, (2.24)

where g(t), f (t) are some functions of integration. When discretizing this equation, i.e.
taking the left-hand side to be un+1(x, t) and replacing all the u(x, t) on the right-hand side of
this equation by un(x, t), we may iterate (2.24) with −4iκ/[x − ξ(t)] as an initial condition
and recover precisely expansion (2.17). Exploiting the Banach fixed point theorem one may
also use (2.24) as a starting point to establish the convergence of the iterative procedure and
therefore the Painlevé expansion, similarly as was carried out for instance in [36, 37].

Reduction from PDE to ODE. Making further assumptions on the dependence of u(x, t) on
x and t we can reduce the PDE to an ODE, and attempt to solve the resulting equation by
integration. A common assumption is to require the solution to be of the form of a solitary
wave u(x, t) = ζ(z) = ζ(x − vt) with v being a constant. When v is taken to be real, even
solutions will be invariant under the original PT -symmetry. With this ansatz the deformed
Burgers’ equation for ε = 2 (2.11) acquires the form

−vζz + iζ ζ 2
z + 2κζzζzz = 0. (2.25)

When ζz 	= 0 we can re-write this equation as

d

dz

(
c − vz +

i

2
ζ 2 + 2κζz

)
= 0, (2.26)

which can be integrated to

ζ(z) = eiπ5/3(2vκ)1/3 c̃Ai ′(χ) + Bi ′(χ)

c̃Ai(χ) + Bi(χ)
, (2.27)

with c, c̃ being constants, χ = eiπ/6(vz − c)(2vκ)−2/3 and Ai(χ), Bi(χ) denoting Airy
functions.

2.2. Painlevé test for the PT -symmetrically deformed KdV equation

The KdV equation was found to be PT -symmetric and was the first equation for which
deformations have been studied [7, 8]. Next we investigate the PT -symmetrically deformed
version of the KdV equation with two different deformation parameters ε and μ

ut − 6uux;ε + uxxx;μ = 0 with ε, μ ∈ R. (2.28)

The case μ = 1 and ε generic was considered in [7] and the case ε = 1 and μ generic was
studied in [8].

2.2.1. Leading order terms. As in the previous section we substitute u(x, t) →
λ0(x, t)φ(x, t)α into (2.28) in order to determine the leading order term. From ut ∼
φα−1, uux;ε ∼ φα+αε−ε and uxxx;μ ∼ φαμ−μ−2 we deduce α = (ε −μ− 2)/(ε −μ + 1) ∈ Z−,
such that the only solution is α = −2 with ε = μ provided ε and μ are integers. This means
neither the case μ = 1 and ε generic nor the case ε = 1 and μ generic can pass the Painlevé
test, but the hitherto uninvestigated deformation with ε = μ has at this point still a chance to
pass it. The possibility of ε and μ being non-integer values remains inconclusive for the same
reasons mentioned in section 2.1.1.
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2.2.2. Recurrence relations. Substituting the Painlevé expansion (2.5) for u(x, t) with
α = −2 into (2.28) with ε = μ gives rise to the recursion relations for the λk by identifying
powers in φ(x, t). We find at

order − (3ε + 2): λ0 = 1

2
ε(3ε + 1)φ2

x,

order − (3ε + 1): λ1 = −1

2
ε(3ε + 1)φxx,

order − 3ε: λ2 = ε(3ε + 1)

24

(
4φxφxxx − 3φ2

xx

φ2
x

)
+ δε,1

φt

6φx

,

order − (3ε − 1): λ3 = ε(3ε + 1)

24

(
4φxφxxφxxx − 3φ3

xx − φ2
xφ4x

φ4
x

)
+ δε,1

φtφxx − φxφxt

6φ3
x

,

order − (3ε − 2): λ4 = ε(3ε + 1)

24

(
6φxφ

2
xxφxxx − 15

4 φ4
xx − 3

2φ2
xφxxφ4x

φ6
x

+
φxφ5x − 5φ2

xxx

5φ4
x

)
.

(2.29)

We find that the relation at order −(3ε − 2) becomes an identity only for ε = 1, which
makes us suspect that also at higher order we will not encounter compatibility conditions and
therefore will not have enough parameters equaling the order of the differential equation. To
test whether new compatibility conditions arise at higher levels we can use the same general
argument as in subsection 2.1.3.

2.2.3. Resonances. We try once again to match the first term in expansion (2.5) with some
term of unknown power. Using the expression for λ0 in (2.29) and making the ansatz

ũ(x, t) = 1

2
ε(3ε + 1)

φ2
x

φ2
+ ϑφr−2, (2.30)

we compute all possible values of r for which ϑ becomes a free parameter. Substituting ũ(x, t)

into (2.28) and reading off the terms of the highest order, i.e. φ−3ε−2+r , we find the necessary
condition

εε(−i)ε−1(3ε + 1)ε−1(r + 1)[6(1 + 3ε) − 2(2 + 3ε)r + r2]ϑφ3ε
x = 0, (2.31)

for a resonance to exist. We observe the presence of the universal resonance at r = −1.
The bracket containing the quadratic term in r can be factorized as (r − r−)(r − r+) with
r± = −(2 + 3ε) ± √

9ε2 − 6ε − 2, such that r± ∈ Z for 9ε2 − 6ε − 2 = n2 with n ∈ N.
For the solution of this equation ε± = (1 ±

√
n2 + 3)/3 to be an integer we need to solve a

diophantine equation 3 + n2 = m2 with n,m ∈ N, which only admits n = 1 and m = 2 as a
solution. Thus the bracket only factorizes in the case ε = 1 into (r − 6)(r − 4). Hence, only
in that case the system can fully pass the Painlevé test. Nonetheless, we may still be able to
obtain a defective series if all remaining coefficients λj may be computed recursively. This
is indeed the case as we demonstrate in detail for one particular choice of the deformation
parameter.

2.2.4. ε = 2 deformation. For ε = μ = 2 the deformed KdV equation (2.28) acquires the
form

ut − 6 iuu2
x + 2 iu2

xx + 2 iuxuxxx = 0. (2.32)

Since the expression become rather lengthy for generic values in the expansion we will
present here only the case λk(x, t) = λk(t) and φ(x, t) = x − ξ(t), with ξ(t) being an

9
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arbitrary function. We find a recursion relation of the form (2.8)

−28 i(1 + j)(j 2 − 16j + 42)λj (t) = −6 i
j∑

n=1

j−n−1∑
m=1

{(m − 2)(n − 2)λm(t)λn(t)λj−m−n(t)}

+ 2 i
j−1∑
n=1

{[(7 − k)n3 + (k − 4)kn2 + (18 − 5k)kn

+ 6k(5 + k) − 28(6 + n)]λj−n(t)λn(t)} + λ′
j−6(t) + (j − 7)λ′

j−5(t). (2.33)

The recursive solution of this equation leads to the expansion

u(x, t) = 7

φ2
+

iξ ′φ3

156
+

(ξ ′)2φ8

192 192
− ξ ′′φ9

681 408
+

i(ξ ′)3φ13

73 081 008
− 725iξ ′ξ ′′φ14

216 449 705 472

+
iξ ′′′φ15

20 262 348 288
− 340 915(ξ ′)4φ18

23 989 859 332 927 488
+

1867(ξ ′)2ξ ′′φ19

758 331 543 121 152
+ O(φ20).

(2.34)

Thus we have obtained a solution of Painlevé type for the deformed KdV equation, albeit
without enough free parameters, i.e. without the possibility to accommodate all possible
initial values. This means we have a so-called defective series. As in the case of the deformed
Burgers equation it is instructive to consider the series for solitary wave solutions, i.e. taking
ξ(t) = ωt , which yields

u(x, t) = 7

φ2
+

iωφ3

156
+

ω2φ8

192 192
+

iω3φ13

73 081 008
− 340 915ω4φ18

23 989 859 332 927 488

+
391 907 iω5φ23

56 760 007 181 706 436 608
− 38 892 808 841ω6φ28

507 260 097 462 393 341 102 260 224
+ O(φ33).

(2.35)

We find a similar behavior for other values of ε.

3. Conclusion

We have carried out the Painlevé test for PT -symmetric deformations of the Burgers equation
and the KdV equation. When deforming both terms involving space derivatives, we found
that the deformations of the Burgers equation pass the test. In specific cases we have also
established the convergence of the series, such that these equations have in addition the
Painlevé property. Based on the conjecture by Ablowitz, Ramani and Segur we take this
as very strong evidence that these equations are integrable. Regarding these models as new
integrable systems leads immediately to a sequence of interesting new problems related to
features of integrability, which we intend to address in a future publication [38]. It is very
likely that these systems admit soliton solutions and it should be possible to compute the
higher charges by means of Lax pairs, Dunkl operators or other methods. We should point
out that most of our arguments will still hold when we start in (2.4) with the usual Burgers
equation, which has broken PT -symmetry, i.e. with σ = iκ ∈ R. However, when embarking
on the computation of charges and in particular energies we expect to find a severe difference
as then the PT -symmetry has a bearing on the reality of the eigenvalues of the charges.

For the KdV equation our findings suggest that their PT -symmetric deformations are not
integrable, albeit they allow for the construction of a defective series.

In future work one could also include deformations of the term involving the time
derivative. The case of allowing ε and μ to be non-integer, but rational, could be dealt
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with by rescaling the field u, such that only integer powers occur and the Painlevé test can
be carried out in the usual sense. It would clearly be very interesting to investigate other
PT -symmetrically integrable systems in the manner in order to establish their integrability.
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A 25 1257–64
[31] Dorizzi B, Grammaticos B and Ramani A 1983 A new class of integrable systems J. Math. Phys. 24 2282–8
[32] Yan Z 2008 Complex PT -symmetric extensions of the non-PT -symmetric Burgers equation Phys.

Scr. 77 025006
[33] Neuberger H 2008 Burgers’ equation in 2D SU(N) YM Phys. Lett. B 666 106–9
[34] Neuberger H 2008 Complex Burgers’ equation in 2D SU(N) YM Phys. Lett. B 670 235–40
[35] Fordy A and Pickering A 1991 Analysing negative resonances in the Painlevé test Phys. Lett. A 160 347–54
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